A Weighted Geometric Inequality and Its Applications
نویسنده
چکیده
A new weighted geometric inequality is established by Klamkin’s polar moment of inertia inequality and the inversion transformation, some interesting applications of this result are given, and some conjectures which verified by computer are also mentioned
منابع مشابه
A goal geometric programming problem (G2P2) with logarithmic deviational variables and its applications on two industrial problems
A very useful multi-objective technique is goal programming. There are many methodologies of goal programming such as weighted goal programming, min-max goal programming, and lexicographic goal programming. In this paper, weighted goal programming is reformulated as goal programming with logarithmic deviation variables. Here, a comparison of the proposed method and goal programming with weighte...
متن کاملImproved logarithmic-geometric mean inequality and its application
In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.
متن کاملSome weighted operator geometric mean inequalities
In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...
متن کاملJessen’s functional, its properties and applications
In this paper we consider Jessen’s functional, defined by means of a positive isotonic linear functional, and investigate its properties. Derived results are then applied to weighted generalized power means, which yields extensions of some recent results, known from the literature. In particular, we obtain the whole series of refinements and converses of numerous classical inequalities such as ...
متن کاملOn Some Applications of the Ag Inequality in Information Theory
Recently, S.S. Dragomir used the concavity property of the log mapping and the weighted arithmetic mean-geometric mean inequality to develop new inequalities that were then applied to Information Theory. Here we extend these inequalities and their applications.
متن کامل